If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+5s=84
We move all terms to the left:
s^2+5s-(84)=0
a = 1; b = 5; c = -84;
Δ = b2-4ac
Δ = 52-4·1·(-84)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*1}=\frac{-24}{2} =-12 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*1}=\frac{14}{2} =7 $
| k5-3=12 | | -j-2-9j=10-8j | | -3f-9=7+f | | 4x+2=9x+0 | | 9x+8=3x+0 | | 7/5=10/m | | 10=3b−8 | | 5x+8=7x+0 | | 9g=-8+7g | | 8(3+a)=54 | | 5x+9=2x+1 | | 2(5-x)=8x+40 | | 4x+8=7x+0 | | 9-v=-8-4-4v | | 35−x=4x−1 | | -5m=4-4m | | 14+2x=40 | | 8+3m=1-4m | | 4p-0.25=0.75 | | 8g+2=34 | | 8x+7=1x+0 | | 16x-19=11x-11 | | -10-3f=10-7f | | 3z-1=17 | | 5x=13x+6 | | -9p=-7p+8 | | 5x-4=901 | | 1/2w-10=50 | | 2=54-4x-16 | | -5-2y=-3y+2 | | 7x+2=6x+0 | | 5x=13+6 |